Chapter 2

Topology of Kahler manifolds

2.1 Chern class

Definition 2.1.1. Let M be a smooth closed manifold with dimensional m.
For p € Z,0 < p < m, the p-th de Rham cohomology of M (with complex
coefficient) is defined by

HE: (M, C) = ker d|qw(ary/dP (M), (2.1.1)
The (total) de Rham cohomology of M is defined as
Hin(M, C) = @ H2 (M, ©). (2.12)
p=0

From Definition 2.1.1, we see that any closed differential form w on M,
i.e., dw = 0, determines a cohomology class [w]| € Hi (M, C). Moreover, two
closed differential forms w,w’ on M determine the same cohomology class if
and only if there exists n € Q*(M) such that w — w' = dn.

If w, w" are two closed differential forms on M and a is a constant function
on M, then

law] = alw], [w+ ] =[w]+ W] =[]+ [w]. (2.1.3)
Moreover, for n,n" € Q*(M),

(WHdn) AW +dy) =wAw +dn A+ (=1)%*“w A7 +1Ady).
(2.1.4)

Thus the cohomology class [w A w’] depends only on [w] and [w']. We denote
it by [w] - [w']. If w” is another closed differential forms on M, then

([l + [w]) - [W'] = [w] - [w"] + [w] - o] (2.1.5)
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From the above discussion, the de Rham cohomology of M carries a natural
ring structure.

The importance of the de Rham cohomology lies in the de Rham theorem
as follows.

Theorem 2.1.2. Let M be a smooth closed oriented manifold with dimen-
stonal m. Forpe Z, 0 <p <m,

(1) dim Hi (M, C) < 400;

(2) Hix (M, C) is canonically isomorphic to HE

Sing(M, C), the p-th singular
cohomology of M.

By Theorem 2.1.2, we could see that Hjz (M, C) is a topological invariant,
although we construct it from the differential structure and the differential
forms. We usually simply denote it by H*(M, C).

Let E be a complex vector bundle over M. Recall that in (1.2.9), we
interpret the curvature R € Q*(M, End(E)) as the composition of connec-
tions. Furthermore, in view of the composition of the endomorphisms, for
any k € N,

k
E\k E E 2k
(R")"=RFo---0R" : €>(M,E) — O**(M, E) (2.1.6)

is a well-defined element lying in Q% (M, End(FE)).

For any A € €°°(M,End(F)), the fiberwise trace of A forms a smooth
function on M. We denote this function by tr[A]. This further induces the
map

tr: Q°(M,End(E)) — Q*(M) (2.1.7)
such that for any w € Q*(M) and A € Q*(M,End(E)),
tr(wA) = wtr[A]. (2.1.8)

We also extend the Lie bracket operation on End(E) to Q*(M,End(E))
as follows: for any w,n € Q*(M) and A, B € Q*(M,End(FE)),

(wA,nB] = (wA)(nB) — (=1)*# () B)(wA). (2.1.9)
The following Proposition is obvious by (2.1.9).
Proposition 2.1.3. For any A, B € Q*(M,End(F)),

tr [[4, B]] = 0. (2.1.10)
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Proposition 2.1.4. Let V¥ be a connection on E. Then for any A €
O (M,End(F)),

dtr[A] = tr [V, 4], (2.1.11)
where
[VE A =VFP oA —(—1)%e440VF (2.1.12)
as in (2.1.9).

Proof. First of all, if VE is another connection on E, then by (1.2.3), VE —
VE € QY(M,End(E)). Thus by (2.1.3), we have tr |[VZ — VZ A]| = 0. So

the right hand side of (2.1.11) does not depend on the choice of V.

On the other hand, by (2.1.12), the right hand side of (2.1.11) is local.
Thus for any x € M, we could choose a sufficiently small open neighbourhood
U, of x such that E|y, is trivial. Then we can take a trivial connection on
E|y, for which (2.1.11) holds obviously.

By combining the above independence and local properties, (2.1.11) holds
on the whole manifold M.

The proof of our proposition is completed. O

Let
flx)=ay+ax+---+ax"+---, a; €C, (2.1.13)
be a power series in one variable. Since R¥ € Q*(M,End(F)),
tr [f(R")] = a0+ ar tr[R®] + - - + an tr [(RF)"] + -+ (2.1.14)

is an element in Q*(M, C), which only have finite terms.
We now state a form of the Chern-Weil theorem as follows.

Theorem 2.1.5. (1) The form tr [f(RF)] is closed. That is,
dtr [f(R")] =0. (2.1.15)

(2) If VE is another connection on E with curvature RE, then there is a
differential form w € Q*(M,C) such that

tr [f(RE)] — tr [f(szﬂ = dw. (2.1.16)
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Proof. (1) From Proposition 2.1.4,

dtr [f(RE)] =t [[VZ, f(RE)])] = Ztr [a; [VE,(RF)]] =0 (2.1.17)

as we have the Bianchi Identity (cf. Proposition 1.2.7)
[VZ(RP)] = [VP,(VF)¥] =0. (2.1.18)
(2) For any t € [0,1], let VZ be the deformed connection on E given by
VE = (1 - t)VF +¢VF (2.1.19)
Then VE is a connection on E such that V§ = V¥ and V¥ = VE. Moreover,

dvE
dt

= VP - V¥ € Q'(M,End(E)). (2.1.20)

Let RE be the curvature of V.
Let f'(z) be the power series obtained from the derivative of f(z). Then
from Proposition 2.1.4 and (2.1.18),

%tr[f(Rf)} = tr {%f’(%@f)} = tr {d(%f)?f’(f%f)}

i HvE vy ] f’(Rf)} _ HVE Vi f’(Rf)”

dt dt

dVy e

By (2.1.21), we have

58]~ [1(79) = [ S iR

=d (/Oltr {dsz’(}%f)} dt) . (2.1.22)

The proof of our theorem is completed. O

Let
g(x) =by+ bz +---+ba" +---, b eC, (2.1.23)

be a power series in one variable.
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Corollary 2.1.6. (1) The form g (tr [f(R")]) is closed. That is,
dg (tr [f(R")]) = 0. (2.1.24)

(2) If V¥ is another connection on E with curvature RE, letting VE =
(1 —t)VE +tVF, we have

g (tr[F(RP))) - g (tr [£(R)])

:d(/olg’ (tr [f(RF)]) - tx {df ’(Rf)] dt>. (2.1.25)

By Theorem 2.1.5 (1), ¢ (tr [f (%REﬂ) is a closed differential form

which determines a cohomology class [g (tr [f <§RE>]>] in H*(M,C).

While Theorem 2.1.5 (2) says that this class does not depend on the choice
of the connection V.

Definition 2.1.7. (1) The differential form g <tr [f (%REH) is called
the Characteristic form of F associated with VZ, f and ¢

(2) The cohomology class [g (tr [f (%REHH is called the Charac-
teristic class of E associated with f and g.

From (1.3.21), for RF € Q?(M,End(E)), we have

det ([ - ERE) = exp (tr {log < \C )D (2.1.26)

2T
in view of
0o n+1 o0 "
log(1 + z) Z . exp(z) =) — (2.1.27)
n=1 n=1 ’

Here I is the identity endomorphism of E.

Definition 2.1.8. The (total) Chern form, denoted by c(E,V¥), associ-
ated with V¥ is defined by

(2.1.28)

V-1
c(E,V¥) = det (I + Q—RE) .
m

We see that c(E, VE) is a characteristic form in the sense of Definition 2.1.7.
The associated characteristic class, denoted by ¢(E), is called the (total)
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Chern class of E. By (2.1.28), we have the decomposition of the (total)
Chern form that

o(B,VE)Y =14+ (E,VE) + 4+ (B, VF) + -+ (2.1.29)
with
(B, V) e Q*(M). (2.1.30)

We call ¢;(E, VE) the i-th Chern form associated with V¥, and its associ-
ated cohomology class, denoted by ¢;(E), the i-th Chern class of E.

It is easy to see that if E is a trivial bundle, ¢(E) = 1.
Especially, by (2.1.26)-(2.1.29), the first Chern form
V-1
o (E,VF) = 2—tr[RE] c QA(M). (2.1.31)

™

We rewrite (2.1.26) as
log (det (I + —V2_1RE)> = tr {log (I + —V;RE)] : (2.1.32)
™ m

The from the power series expansion of log(1+xz), we can deduce that for any
integer k > 0, tr [(RE )k] can be written as a linear combination of various
products of ¢;(E, VE)’s.

Therefore, by Definition 2.1.7, any characteristic form (or characteris-
tic class) could be written as a linear combination of various products of
ci(E,VE)'s (or ¢;(E)’s). This establish the fundamental importance of the
Chern class in the theory of characteristic classes of complex vector bundles.

Proposition 2.1.9. Let E, E5 be two vector bundles over M endowed with
connections VEL and V2 respectively. Let RF' and R¥? be the corresponding
curvatures.

(1) The curvature of the induced connection on the direct sum E1 @ Ey is
given by

RE1OE: — REv @y RE2, (2.1.33)
(2) On the tensor product Ey ® Es, the induced curvature is given by
RE®E: — REV 2 1 @ 1@ RP. (2.1.34)
(8) Let E* be the dual of E, we have
RF" = —(RF)". (2.1.35)

(4) For a smooth map f: N — M, we have
RIE = f*RF. (2.1.36)



2.1. CHERN CLASS 35

Proposition 2.1.10. Let E, E' be complex vector bundles over M endowed
with connections VF, V¥ respectively.
(1) Let VE®F" be the induced connection on E @ F',

o(E®E V) = (B, VE) . (B, V). (2.1.37)
(2) Let VE2E be the induced connection on EQE'. If E' is a line bundle,
(B @ E', VY = ¢|(B) + rank(E) - ¢, (E"). (2.1.38)

(3) Let VE be the induced connection on the dual bundle E*,
ci(E*,VE) = (=1)'c;(E, V). (2.1.39)

(4) Let f : N — M be a smooth map. Let f*V¥ be the induced connection
on f*F,

a(f*E, V) = fre,(BE,VE). (2.1.40)
(5) If rank(E) = k, then
c1(B,VF) = (N E, VA'F), (2.1.41)

Proof. Note that (1), (3) and (4) follow directly from Proposition 2.1.9. We
only need to prove (2) and (5).
From Proposition 2.1.9 (2), we have

tr [exp (%RE@)E’)] = tr [exp (gREﬂ (14 (B, VEY).
(2.1.42)

Then (2) follows from taking the 2-form part of the two sides of (2.1.39).

Let VA*F be the connection on AFE induced from VZ. Let T and I’ be
the connection forms of VZ and VA'E. Let o1, -+ ,0, be a local basis of
sections of E. Then

k
=1

k
=1

So we have

T = toT]. (2.1.44)
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Thus
tr[R”] = tr[dl] + tr[l AT] = dtr[[] = dI' = RM". (2.1.45)

Therefore we get (5).
The proof of our proposition is completed. O

Example 2.1.11 (First Chern form of Chern connection). Let M be a com-
plex manifold and E be a holomorphic vector bundle over M with Hermitian
metric h¥. Let V¥ be the Chern connection on (E, h*). By Theorem 1.2.11,
the curvature of the Chern connection is

RE = 00log(h"). (2.1.46)
Then the first Chern form
cl(E,VF) = —_1tr[RE] = —2—_185tr10g(hE)
T T
v—1

= —2—aélog det(h®) € QY1 (M). (2.1.47)
s

Example 2.1.12 (v, on CP"). By (1.2.33),

V-1 V=1 (1+|0>)db; A db; — 0,0,d0; A db;
(W, V") = —R" = — (1 + |OF)dbi A 540 A .
o o L+ 0P
(2.1.48)
From (1.2.34), we have
1
c1(Yn, V) = o WS (2.1.49)

where wpg is the Kéahler form associated with the Fubini-Study metric on
CP".

Ifn=1,
V—1dO A db / /+°°
Wrg = d?“d = 2. 2.1.50
/ml PSE L TA 02 1+r i (2.1.50)
So from (2.1.49),
/ c1(y1, V) = —1. (2.1.51)
Ccp!

That means the first Chern class of the tautological bundle of CP! is equal
to -1 in H*(CP',Z) ~ Z.
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Definition 2.1.13. Let M be a complex manifold with complex dimension
n. Then the holomorphic line bundle

Ky =10\ (2.1.52)
is called the canonical line bundle of M.

Definition 2.1.14. Let M be a complex manifold. Let TCM be the complex
tangent bundle of M. We define

ci(M) := c;(T°M) = ¢;(TMO M) € H*(M,C), (2.1.53)
which is called the i-th Chern class of M.
From Proposition 2.1.10 (5), we have
(M) =c1(Kyy) = —a(Ky). (2.1.54)

If M is a complex manifold, by 1.1.7, 9> = 0. The following definition is
well-defined.

Definition 2.1.15. Let M be a complex manifold. Then the (p, ¢)-Dolbeault
cohomology is the vector space

_ Ker(é‘gp,q(]\/[))
Im(9]apa-1(ar))

HP9(M) : (2.1.55)

Note that if a € QP is d-closed, it is O-closed. It means that [a] €
HP4(M). So

e if F/ is a holomorphic vector bundle over M, ¢;(M) € H*(M);
e if (M,w) is Kahler, [w] € HY(M);
e if (M,w) is Kahler, [Ric,] € H"(M).

From Proposition 1.3.4, Definition 2.1.14 and (2.1.47), we have the fol-
lowing proposition.

Proposition 2.1.16. Let (M,w) be a Kihler manifold. Then the first Chern
form of TOOM associated with its Chern connection is

— —_13KX4 — _—'_1RKM — i
27 27 27

Here Ric,, is the Ricci form in Definition 1.5.1. Moreover, for the Chern
class,

e (T £, o THIM) Ric,.  (2.1.56)

ci(M) = {% Ricw} € HY'(M). (2.1.57)
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Theorem 2.1.17 (Calabi, Yau). Let (M,w) be a Kdhler manifold. For any
p € [2mer(M)], there exists uniquely Kdahler form ' satisfying [W'] = [w] €
HYY (M) such that Ric, = p. In particular, if ci(M) = 0, there exists
Kihler form ' such that Ric, = 0, i.e., w' is Ricci-flat or (M,w') is a
Kahler-FEinstein manifold with Einstein constant 0.

From (1.1.12) and (1.1.22), for K&hler form w, we could calculate that

0

w" = (V=1)"g;, 5, " G, 5, A" NdZ N ANd2 A dE
= (\/ —1)”gi1,31 Tt gim%@-l,...,inéjh...dndzl A dzl A NdZ" NdZ"

= (VD)1 G, Ot in O 0 G g Azt AAEY A A A dE"
=nl(V=1)"15, " Gnj,Ojr e judz" ANdZ" A A A dZ"
=nl(v=1)"det(g;)dz" Adz" A+ Adz" N dz"
= 2"nldet(g;;)dx" Ady' A+ Ada™ Ady®. (2.1.58)

It means that w™ is a volume form of M.

Definition 2.1.18. (1) A real (1,1)-form ¢ on a complex manifold M is
called positive (resp. negative) if the symmetric tensor ¢(-,J-) is positive
(resp. negative) definite. If ¢ > 0 (resp. ¢ < 0), as in (2.1.58), we have
Ji " >0 (resp. [, ¢" <0).

(2)A cohomology class in HY'(M) N H*(M,R) is called positive (resp.
negative) if it can be represented by a positive (resp. negative) (1,1)-form.
(For the well-definedness of this definition, we need to figure out that if ¢ and
¢’ are two representatives of the cohomology, it is not possible that ¢ > 0
and ¢’ < 0. If not, we have [, ¢" >0, [, (¢')" < 0and (¢')"—¢" is d-exact.
But by Stokes’ formula, it is not possible.)

(3) A holomorphic line bundle L over a compact complex manifold is
called positive (resp. negative) if there exists a Hermitian structure on L
with Chern connection V* and curvature RY = (V)2 such that /=1R" is
a positive (resp. negative) (1,1)-form.

From (2.1.31), it is easy to see that
L>0&¢(L)>0, L<0<¢(L)<0. (2.1.59)

Proposition 2.1.19. If there exists a complex line bundle L over M such
that c1(L) > 0, then M is Kdhler. Note that if ¢;(L) <0, ¢1(L*) > 0.

Proof. From Definition 2.1.18, there exists a positive (1, 1)-form ¢ such that
[¢] = c1(L). Since (-, J-) is positive definite, we take g(-,-) := ¢(,J-) as
the metric on M. Then ¢ is a closed Kahler form.

The proof of our proposition is completed. O
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From (1.3.14) and (2.1.18) if (M,w) is a Kéhler-Einstein manifold with
Einstein constant k, then

1
a(M)=k- [%wl . (2.1.60)
Since w > 0, if k£ > 0 (resp. < 0), ¢1(M) > 0 (resp. < 0).

Theorem 2.1.20 (Aubin, Yau). Let (M,w) be a compact Kihler manifold.
If c1(M) < 0, there ezists a unique Kdhler-Einstein metric on M up to scalar
factors.

Comparing with Theorem 1.3.16, a recent result says that the negative
holomorphic sectional curvature implies that the first Chern class is negative.

Theorem 2.1.21 (Wu-Yau, Tosatti-Yang, Diverio-Trapani). Let (M,w) be
a compact Kdahler manifold with negative holomorphic sectional curvature.
Then ¢ (M) < 0.

Definition 2.1.22. If M is a compact complex manifold with ¢;(M) > 0,
then it is called the Fano manifold.

By Proposition 2.1.19, the Fano manifold is Kahler.

Theorem 2.1.23 (Chen-Donaldson-Sun, Tian). Let (M,w) be a compact
Kdhler manifold. If cy(M) > 0, there exists a Kdhler-Einstein metric on M
if and only iof M is K-stable.

Note that in local coordinates,

V—18?%log det(g)
2T 02;0%;

el (TWO N, 9THOMY = dz' A dZ. (2.1.61)
Example 2.1.24. We now compute the Chern class of CP".

Let E be the orthogonal complement of v, using the standard Hermitian
metric on C*™!, such that v, @ F is a trivial complex vector bundle over CP"
with complex rank n + 1. From the theory of vector bundles (cf. eg. Milnor
”Characteristic class” Theorem 14.10 ), we could obtain that

TCCP" ~ Home (v, F). (2.1.62)

Observe that for complx line bundle 7, Home¢ (v, 7) =~ 75 ® 7, is a trivial
line bundle. (In fact, this result holds for all line bundles.) By adding the
trivial line bundle on two sides of (2.1.62), we have

TCCP" @ £' ~ Home/(v,, ™). (2.1.63)
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Here £F denotes the trivial complex vector bundle with rank k. Clearly the
right hand side of (2.1.63) can be identified with the Whitney sum of n + 1
copies of the dual bundle Homg(v,, ') ~ ~%. Thus by Proposition 2.1.10
(1), (3), we have

¢(CP") = ¢(T°CP" @ £') = (7)™ = (1 — c1 (7)™ ™. (2.1.64)
In particular,
n 1 FS
c1(CP") = —(n+ 1)ci(y) = (n+1) [ﬂw } : (2.1.65)

From Proposition 2.1.16, we get the result again that CP" is a Kahler-
Einstein manifold with Einstein constant n + 1.
From (2.1.64), co(CP") = WQ (7n). Combining with (2.1.65), we have

neci(CP")? = 2(n + 1)y (CP™). (2.1.66)
For complex projective space, by (2.1.58),
det ((14|017)1 — 6"0)

}ZS
det (gij ) (1 + |9|2)2n
(L ]02)" det(1 — 021+ 10D 1 (2.1.67)
- L+ P> " e

Here we use the identity of determinants:

A B -
det < c D > = det(A) det(D — CA™'B)

= det(D) det(A — BD'C), (2.1.68)

for A, D invertible.
we could calculate that

1

FS\™ n 1 2n
w :2n!/ ———dx A - ANdx
/C‘IP’" ( ) Us (1 + ‘x’2)n+1

o [ 2 e ot (N 2 2, (2,160
= ’ﬂ'n/o WT— mT™n-n <1+T2>0—(7T). ( )
Here we use the formula
1 2n 27.‘.71 e 2n—1
A f(lz))dz" A=+ Nda™ = =11 ), < f(r)dr. (2.1.70)

Therefore, we have

/ 1 (CPY" = (n + 1), (2.1.71)
cp”
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Theorem 2.1.25 (Miyaoka-Yau Inequality). Let X™ be a compact Kdhler
manifold.
(1) If M is Kdihler-FEinstein with k > 0, then

n/Mcl(M)" < 2(n+1)/Mcl(]\/[)”2c2(M), (2.1.72)

with equality if and only if M = CP".
(2) If M is Kdahler-Einstein with k < 0, then

n(—l)”_Q/Mcl(M)” g2(n+1)(—1)"—2/Mc1(M)"—2c2(M), (2.1.73)

with equality if and only if M = HZ/T.
Theorem 2.1.26 (Fujita ’18). If M" is a Fano manifold with Kdhler-Einstein

metric, then

/ e (M) < (n+1)", (2.1.74)

with equality if and only if M is biholomorphic to CP".

Remark 2.1.27. For the line bundles, the first Chern class is a complete
invariant. It means that for any element in H?(M,Z), there exists a line
bundle such that this element is the first Chern class of this bundle and if
two line bundles are not isomorphic, then the first Chern classes of them are
not equal. This is not right for vector bundles with higher rank.

We now list some other common characteristic classes here.

e The Chern character form associated with V¥ is defined by
v—1
ch(E,V¥) = tr {exp <2—RE)] € QV(M). (2.1.75)
T

The associated cohomology class, denoted by ch(E), is called the Chern
character of E. For complex vector bundles F;, Fs,

ch(E, @ E,) = ch(E,) + ch(Ey), (2.1.76)
ch(E; ® E) = ch(E),) ch(Ey). (2.1.77)

The Chern character is a polynomial with respect to the Chern classes:
1 1
ch=r +c + 5(—262 + C%) + E(C? - 30102 + 303) + - (2178)

Here »r = rank F.
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e The Todd form associated with V¥ is defined by

V-1pE
Td(E,VF) = det L
1 —exp (—%RE)

e Qeen(M).  (2.1.79)

The associated cohomology class, denoted by Td(FE), is called the Todd
class of E. The Todd class is a polynomial with respect to the Chern
classes:

1 1 1
Td = 561 + E(CQ + C%) + ﬂCICQ +e (218())

Recall that in (1.2.17), for holomorphic vector bundle E, 9F : QP¢(M, E) —
Pt (M, E) is well-defined and (97)* = 0.

Definition 2.1.28. Let M be a complex manifold and £ be a holomorphic
vector bundle. Then the Dolbeault cohomology H?(M, E) is the vector space

Ker (0% |qo.q
Hi(M, B) = SO onarn)

= _ . 2.1.81
Im(8E|Qo,q_1(M,E)) ( )

We also denote by
HPY(M, E) := HI (M, \*"T* "M @ E). (2.1.82)

Theorem 2.1.29 (Hirzebruch-Riemann-Roch Theorem). Let M be a com-
plex manifold and E be a holomorphic vector bundle. Then

n

Z(—midimCH"(M,E):/ Td(T° M) ch(E). (2.1.83)

i=0 M

Remark 2.1.30 (Characteristic class for real bundle). Let now E be a real
vector bundle over M, and V¥ be a connection on E. Let R” be the curvature
of E. Proceeding in exactly the same way as (2.1.6)-Definition 2.1.7 for real
vector bundles with connections, we could also get Chern-Weil theory for

real vector bundles. In the following examples, we assume that E is a real
bundle.

e The Pontrjagin form associated with V¥ is defined by

g 2\ /2
p(E,VF) = det (1— (f—ﬂ) ) € Q% (M). (2.1.84)
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The associated cohomology class, denoted by p(E), is called the Pontr-
jagin class of E. As the Chern form, p(E, VF) admits a decomposition

p(E,VE)Y =14+ p(E,VE) + -+ pp(E,VE) + .. (2.1.85)

with p;(E, VE)Q¥(M). We call p;(E,VF) the i-th Pontrjagin form
associated with VE and the associated class p;(E) the i-th Pontrjagin
class of E. For ¢ > 0,

pi(E) = (=1)'csi( E® C). (2.1.86)

The Hirzebruch’s L-form associated with V¥ is defined by

- 1/2
V= E
21 R

tanh (%RE>

L(E,V¥) = det c Q*(M).  (2.1.87)

The associated cohomology class, denoted by L(E), is called the L-
class of E. The L-class is a polynomial with respect to the Pontrjagin
classes:

1 1 1
L=- —(Tpy — p}) + =———=(62p3 — 13 2p3) 4 -+
3P1+45(p2 p1)+33.5.7( D3 p1p2 + 2p7) +
(2.1.88)

The A-form associated with VZ is defined by

- 1/2
V= E
4 R

A(E,VF) = det
sinh (LR

e Q% (M).  (2.1.89)

The associated cohomology class, denoted by A(E), is called the A-
class of . The A-class is a polynomial with respect to the Pontrjagin
classes:

1

A=——p+

1
il + g it )

— 5035 5 (1605 — dpipr +31p}) + -+ (2.1.90)
If £ is oriented,

Td(E® C) = A(E)% (2.1.91)



